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ABSTRACT Here, we describe the first genome sequences of the Anaerolineae from
a sulfidic environment, expanding the environmental distribution of sequenced An-
aerolineae. These genomes represent basal Anaerolineae lineages, branching soon af-
ter the divergence of the sister class “Candidatus Thermofonsia,” expanding our un-
derstanding of the metabolic evolution of this group.

Although members of the Anaerolineae class of the Chloroflexi phylum appear in
diverse environmental 16S sequence data sets (e.g., carbonate tidal flats [1] and

iron-rich hot springs [2]), the environmental distribution of previously sequenced
Anaerolineae is primarily limited to groundwater and wastewater systems (e.g., refer-
ences 3 and 4). Here, we present the first genomes of Anaerolineae from sulfidic
environments, Nak19 and Nak57, expanding the genetic and environmental distribu-
tion of sequenced representatives of this clade.

The metagenome-assembled genomes (MAGs) were recovered from metagenomic
sequencing of microbial communities from a sulfidic hot spring in Japan, as described
previously (5, 6). In brief, samples were collected from microbial mats at Nakabusa
Onsen in Nagano Prefecture, Japan, and DNA was extracted and sequenced via Illumina
HiSeq. Sequences from four samples were coassembled with MegaHit version 1.1.2 (7)
and genome bins constructed based on differential coverage using Metabat (8).
Genome bins were assessed for completeness and contamination using CheckM (9) and
uploaded to RAST for overall characterization (10).

MAG Nak19 totals 3.45 Mb recovered as 158 contigs, encoding 3,163 coding
sequences and 44 tRNAs. The Nak19 genome has 51.2% GC content and was estimated
by CheckM to be 90% complete, with 6.09% contamination. Nak57 is 3.77 Mb over 159
contigs, encoding 45 tRNAs and 3,391 coding sequences. Its GC content is 51.2%.
CheckM estimates Nak57 to be 95.45% complete, with 4.85% contamination.

Neither Nak19 nor Nak57 recovered a 16S gene, but phylogenies based on RpoB and
concatenated ribosomal proteins robustly place these MAGs as basal Anaerolineae, with
Nak19 being the basal-most Anaerolineae and Nak57 being more closely related to
cultured Anaerolineae, such as Thermanaerothrix daxensis (11) and Ornatilinea apprima
(12).

Nak19 and Nak57 both encode aerobic respiration via an A-family heme-copper
oxidoreductase (HCO) complex, a bd oxidase, and a bc complex. Nak57 also encodes an
alternative complex III (ACIII), while Nak19 encodes NirS for nitrite reduction. Phyloge-
netic analysis of the respiration genes from Nak57 show gene relationships congruent
with organismal relationships, supporting the vertical inheritance of aerobic respiration
in the Anaerolineae following acquisition at the base of the class, consistent with trends
in other Chloroflexi classes (6, 13). ACIII was not recovered in Nak19, but this may be a
false-negative result due to incompleteness of the MAG; however, as the basal-most
Anaerolineae member, it may also be that ACIII had not yet been acquired by the
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Anaerolineae when this clade diverged. ACIII may therefore have been acquired on the
branch leading to Nak57 and the other Anaerolineae. The Anaerolineae have typically
been described as obligately anaerobic fermenters (e.g., references 14 and 15), but
genes for aerobic respiration appear to be widespread in this group (3, 4, 11). It remains
uncertain whether these genes are used for aerobic respiration or only for O2 detoxi-
fication in the Anaerolineae whose genomes are described here and elsewhere.

Consistent with other reports from sequenced Chloroflexi, Nak19 and Nak57 do not
appear to encode outer membrane proteins, supporting interpretations of a monoderm
membrane architecture as distinct from that of the diderm sister phylum Armatimon-
adetes (6, 16, 17).

Accession number(s). These whole-genome shotgun projects were deposited in
DDBJ/EMBL/GenBank under the accession numbers QEXX00000000 (Nak19) and
QEXW00000000 (Nak57).
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